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Abstract. Certain classes of correlated site-percolation problems (or correlated spreading 
phenomena) on Bethe lattices are analysed exactly. Our analysis of percolation of, e.g., 
occupied sites, requires that spreading of clusters of occupied sites is determined by a 
finite number of conditional probabilities. A condition specifying the percolation threshold 
is provided, as well as expressions for the percolation probability and average cluster size. 
Previous results for random and nearest-neighbour Ising-model distributions are recovered 
as special cases. Results are illustrated with examples for equilibrium and non-equilibrium 
distributions, the latter obtained via irreversible cooperative filling. We also discuss ‘two- 
phase percolation’ for distributions with no occupied N N  pairs of sites, correlated bond 
percolation and other problems. 

1. Introduction 

Any family of distributions of occupied sites on a lattice for various occupancy 
probabilities, p ,  between zero and unity generates a percolation problem [ 11. Typically 
one defines clusters of occupied (e) and unnoccupied (0) sites via a connectivity rule 
wherein nearest-neighbour ( N N )  sites of the same state are assigned to the same cluster. 
One then analyses the distribution of cluster sizes and the appearance or disappearance 
of infinite clusters as p varies. The latter ‘percolation thresholds’ will be denoted by 
P = P c .  

The simplest case of a random distributions, i.e. where the occupancies of different 
sites are independent, has been studied extensively [ 2 ] .  However, in physical systems, 
correlations will typically exist between different sites and their effect on the percolation 
transition is of some interest. Such questions have been analysed for N N  Ising-model 
distributions where the occupied sites or ‘particles’ interact via N N  interactions and 
are in thermal equilibrium. Here one naturally varies the temperature to study the 
connection between percolative and thermal critical phenomena [ 1,3]. Note that for 
any equilibrium distribution associated with pairwise interactions only, the percolation 
problems for occupied and unoccupied sites are not distinct because of ‘particle-hole 
symmetry’. Such equilibrium distributions, however, represent only one class of corre- 
lated distributions, albeit the most familiar class, and do not describe physical systems 
out of equilibrium. Thus here we are motivated to also consider percolation problems 
for various classes of non-equilibrium correlated distributions. These could, for 
example, be generated from kinetic Ising models [4], via irreversible cooperative site 
filling [5] or restricted valence site filling [6], or specified directly as below. Here, in 
general, the percolation problems for occupied and unoccupied sites will be distinct. 
Such introduction of correlations, with finite correlation length, is not expected to 
change the critical exponents from their random percolation values [ 11. 
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A variety of other modifications of the above -percolation problems are possible. 
Some involve changing the definition of clusters, e.g., via longer range connectivity, 
multiple coordination, or  even more drastic bootstrap models [ 11. Here we only discuss 
one example of the former appropriate to the description of 'multiphase' distributions 
with no occupied NN pairs of sites. It is also common to consider bond rather than 
site percolation, so we will make a few comments on such problems. 

Recently it has become popular to associate random percolation with various 
spreading phenomena [7]. Here percolation clusters can be grown as follows: start 
with a single occupied site surrounded by 'growth' sites; choose (in one of various 
ways) one of the 'allowed' growth sites at the cluster perimeter; either occupy it with 
probability p and create new adjacent growth sites, o r  make it permanently unoccupied 
with probability 1 - p ;  repeat this process indefinitely. If correlations are present this 
procedure becomes more complicated. Now the probability of occupying (making 
permanently empty) the chosen growth site must be taken, not as p (  1 - p ) ,  but rather 
as the conditional probability that this site be occupied (unoccupied) given the state 
of all previously occupied cluster sites and those growth sites assigned permanently 
unoccupiedt. 

Such conditional probabilities are implicitly prescribed by the choice of model, 
e.g., N N  Ising model, irreversible cooperative filling model, etc, whose percolation 
properties are under consideration. The difficulty is that, for physical two- and three- 
dimensional lattices, there are an  infinite number of such distinct conditional prob- 
abilities. In the most general case, these depend on all previously assigned cluster 
sites. Even for Markov fields describing NN Ising-model distributions, these depend 
on suitably defined unoccupied or occupied perimeter sites of the previously assigned 
cluster, so there will still be infinitely many. 

Here we consider Bethe lattices and more general branching media where exact 
solution of the random percolation problem is straightforward [SI. Such analysis can 
be naturally interpreted in terms of spreading phenomena, or as branching or cascade 
processes [9]. In this paper, we focus on their extension to classes of correlated 
distributions, where only a finite number of conditional probabilities of the type 
described above are required to prescribe spreading. To this end, we first introduce 
the concept of nth-order spatially Markovian distributions for Bethe lattices with 
coordination number z. Here a string of n sites with any prescribed state, adjacent to 
some particular site, shields this site from the influence of sites in the branch of the 
lattice attached to the other end of the string (see figure 1). These distributions are a 
completely determined prescription of 2"- conditional probabilities for finding an 
occupied (or unoccupied) site given various configurations of the n* =E::: ( z  - 1) '  
sites within n lattice vectors and within a single branch of the lattice attached to this 
site (see figure 2 ) .  These quantities, some of which may be equivalent from symmetry 
considerations, automatically generate probabilities for all smaller configurations (see 
[lo]) and, in fact, for all configurations (exploiting the nth-order Markovian property). 
One can also show that spatial correlations exhibit asymptotic exponential decay for 
large separations. It is important to note that there is a correspondence between these 
distributions and the equilibrium distributions obtained from Ising models with various 
choices of general (i.e. not just pairwise) range-n interactions and of temperature. 

t Clearly the probability of finite portions o f  the percolation cluster, at any stage of growth, can be written 
as  products of these conditional probabilities. I n  fact, each order  of creating the cluster generates such a 
product,  and  equality o f  these implies consistency relations between conditional probabilities [ 5 ] .  
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LL -I 
Figure 1. Sixth-order Markovian condition on a z = 3 Bethe lattice. The specified string 
of six sites in the full box shields the leftmost empty site from the influence of those in 
the branch enclosed in the broken box. 

Figure 2. Conditional probabilities required to specify ( a )  first-order, I b )  second-order 
Markovian distributions on I = 3 Bethe lattices. Sites inside boxes have specified state 
influencing the site outside. 

To broaden the scope of our Bethe lattice analysis beyond such equilibrium 
distributions, we shall consider broader classes of nth-order 0- (0-) Markovian 
distributions where only occupied (unoccupied) strings of n sites are assumed to shield 
in the way described above. We further note that analysis of such distributions is 
natural since they retain precisely those features of the above nth-order Markovian 
distributions sufficient for an  exact analysis of the percolation characteristics of 
occupied (unoccupied) sites. This is reflected by the property that the probability of 
any occupied (unoccupied) cluster can still be calculated here from a finite number 
of conditional probabilities. 

Finally we note that distributions generated by irreversible cooperative filling or 
adsorption (emptying or desorption) exhibit finite-order 0- (0- )  Markovian properties. 
However such distributions d o  not exhibit a finite-order Markovian property, and 
spatial correlations d o  not exhibit large-separation asymptotic exponential decay 

In § 2 ,  we analyse percolation of occupied sites for zeroth-, first- and second-order 
.-Markovian distributions on Bethe lattices, and in § 3 we extend this treatment to 
third- and higher-order distributions. We focus on determining a condition specifying 
the percolation threshold and on calculating the average size, S, of the cluster containing 

[5,111. 



6490 J W Evans 

some occupied site and the percolation probability, P, that some unoccupied site is in 
an infinite cluster. By interchanging occupied and unoccupied site designations, these 
results can be applied to percolation of unoccupied sites for the corresponding order 
0-Markovian distributions. In § 4, we extend these considerations to decorated Bethe 
lattices and to bond percolation and, in § 5 ,  to polychromatic and a new class of 
multiphase percolation problems. Some explicit examples are treated in 0 6. Conclud- 
ing remarks are given in § 7 ,  together with some comments on treatment of correlated 
percolation for physical lattices. 

2. Zeroth-(random), first- and second-order .-Markovian distributions 

Previously developed techniques for the analysis of percolation for random-[2] and 
first-order Markovian NN Ising-model distributions [ 121 are straightforwardly extended 
here to treat up to second-order spatially Markovian distributions. Specifically, we 
consider percolation of occupied sites for second-order .-Markovian distributions on 
a Bethe lattice of coordination number z. 

Consider the z - 1  sites neighbouring one end of an N N  pair of sites specijied 
occupied. Let g (  i) (f( i)) denote the conditional probability of finding a specific subset 
of i of these occupied, and the other z - 1 - i unoccupied (unspecified), so g ( z  - j )  = 
Zt=, (-l)'-'({I;)f(z- i), for O S j s  z. Thusf(1) is the conditionafprobabi1it.y o f j n d i n g  
an occupied site given an adjacent occupied NN pair. Now since on average ( z  - 1) 
f( 1) of these z - 1 neighbouring sites are occupied, for an occupied cluster to 'spread' 
indefinitely or percolate from the occupied N N  pair, one must have (: - 1) f( 1) 2 1. 
Therefore at the percolation threshold, p = p c ,  one has 

1 = ( z - l ) f ( l ) .  (2.1) 

We thus recover previous first-order results (here f( 1) =?( l) ,  the probability that a 
site is occupied giuen that a neighbour is occupied) and random results (heref( 1) = p ) .  

It is also instructive to consider the conditional probability, Q, that one end of an 
occupied N N  pair is not connected to an infinite cluster. Enumerating all possible 
states of the z - 1 sites neighbouring one end, and exploiting the second-order 0- 
Markovian property yields the recursive formula (see [2]) 

i.e. Q consists of a contribution of g ( 0 )  from where all z - 1 neighbours are unoccupied, 
z - 1 contributions of g (  1)Q from where one is occupied but not connected to an 
infinite cluster, etc. The continuous physical solution to (2.2) satisfies Q 1, for p s p c ,  
and 

for p Z p c .  The latter Q depends on all thef( i)  and vanishes asf(  1) or p approach unity. 
We now determine the percolation probability, P, that some occupied site is in an 

infinite cluster. Let g'( i)  ( f ( i ) )  denote the conditional probability at a specific set of 
i of its neighbours are occupied, and that the other z - i are unoccupied (unspecified). 
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Enumerating all ways that this site can be in a finite cluster and exploiting the 
second-order O-Markovian property yields (see [ 2 ] )  

1 - P =  i ( z ) g ( i ) Q '  i or P =  , = I  i ( - l ) ' - ' ( ; ) f ( i ) ( l -Q) '  (2.4) 

for p 3 p c ,  i.e. 1 - P consists of a contribution g(0) from where all z neighbours are 
unoccupied, z contributions of g ( l ) Q  from where just one neighbour is occupied but 
not connected to an  infinite cluster, etc. Thus, using (2.3), one concludes that 

P - ~ f (  1 ) ( 1 - Q ) - 2 z ( z - 1 ) - ' ( z - 2) - I f (  1 )f( 2) - ' [ ( z - 1 )f( 1 ) - 1 ] (2 .5  ) 

as p approaches p c  from above. The average cluster size, S, can be calculated from 
the average number, T, of occupied sites connected to one end of an occupied N N  

pair using (see [2]) 

i.e. S includes a contribution of g'( i )  (1  + i + i T )  from each of the (t) configurations 
where exactly i neighbours of the chosen cluster site are occupied. T is determined 
from the recursive formula (see [2]) 

T = 2' ( ' y  ' )g(i)(i+ i T )  = ( z  - l)f(l)[l  - ( z  - l)f(l)]- '  for P < P c  (2.7) 
I =o 

i.e. T includes a contribution of g ( i ) i ( l +  T )  from each of the (';I) configurations 
where exactly i neighbours of the occupied N N  pair are also occupied. 

For first-order O-Markovian distributions, one has f( i )  =?( i )  = A I ,  where A =f(  1) 
is the conditional probability of a occupied site given an occupied neighbour, and 

Q = l - A + A Q ' - '  1 - P = (1 - A + AQ)' S = ( l + A ) [ l - ( z - l ) A ] - ' .  (2.8) 

Random percolation results follow immediately after setting A = p. 

(see [ lo] )  

3. Third- and higher-order O-Markovian distributions 

First we consider percolation of occupied sites for third-order O-Markovian distribu- 
tions on a Bethe lattice of coordination number z. Unlike the above examples, here 
one cannot trivially obtain a condition for the percolation threshold. 

Let ck denote an occupied N N  pair of sites together with k occupied and  z - 1 - k 
unoccupied sites neighbouring the right end (see figure 3). Let gk ( i ) ( fk ( i ) )  denote the 
conditional probability that, given CA, a specific subset of i sites of the z - 1 sites 

/' ..<: ;;+-:- ;;+- _ _  

c3 c1 I c2 

Figure 3. Configurations, ci, associated with percolation quantities for third-order 
Markovian distributions on a z = 3 Bethe lattice. 
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neighbouring the left end of CL are occupied, and that the other z - 1 - i are unoccupied 
(unspecified). Here one has 

Finally let Qk denote the probability that the left end of q, is not connected to an 
infinite cluster. Enumerating all ways that this can occur, and exploiting the third-order 
.-Markovian property, yields for QA the coupled non-linear equations (cf ( 2 . 2 ) )  

whose solutions satisfy Q k  = 1 for p G p c ,  Qk < 1 for p > p c  and Qk + 0 as p + 1( for all 
k). The percolation probability, P, satisfies 

with g' defined as previously. 
Next we determine the condition specifying the percolation threshold. Set S Q k  = 

Qk - 1 and let S Q  denote the vector with ( z  - 1) components, SQk, for 1 S k S z - 1. 
Let M(I) denote a ( 2 - l ) x ( z - 1 )  matrix with components k f k , = ( z - l ) ( f I : ) g k ( i )  
(Ik, = &,) for 1 s k, i s z - 1, and let M, denote a submatrix obtained from M by 
restricting k, i to a subset of m labels. Set R = X m r 2  (-1)'" det(M,), where det( ) 
denotes the determinant. Linearising (3.1) about Qk = 1 (or SQ =0) yields 

Thus for (3.3) to be consistent, at p = p c  we must have 
0 = (-1)' det( M - I )  

(M - I ) S Q  ~0 for p = p c .  (3.3) 

= - l + ( ~ - l ) f , ( l ) + ( ~ - l ) ~ ~ ( ,  z - 2  )[ (-l) '-J( :- ')A(i)]-R 

, = 2  1-1 J - 1  J - 1  
= - l + ( ~ - l ) f , ( l ) +  R' .  (3.4) 

The terms R' vanish at p = 0 or 1, or for second-order .-Markovian distributions. 
Provided the A (  i )  vary continuously from zero to unity with p ,  ( -112 det(M - I) varies 
continuously from -1 to z - 1, so indeed (3.4) can be solved for p = p c .  Its reduction 
to the results of 9 2 is immediate. 

When z = 3, the quadratic Ql and Q2 equations can be solved exactly. Here we 
just note that (3.4) assumes the explicit form (see figure 4) 

(3.5) 1 = 1 1 + 2 [ f A  2 1 - A  ( 2  11 - 4[fl( 1 ) f , ( 2 )  -f2 1 )fl(2)1 

Figure 4. Diagrammatic representation of condition (3.5) for the percolation thresholds 
for third-order MarkoLian distributions on z = 3 Bethe lattices. Sites inside boxes have 
specified state. 
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at p = pc. Typically the quadratic f term should be smaller than the linear f difference 
term. Note that here gk(1)=fk(1) - .h(2)  and gk(2)=fk(2). 

We calculate the average cluster size, S, via the auxiliary quantities, TA,  which 
denote the average number of occupied sites attached to the left end of ck, using 

If T [ f l  denotes the vector with ( z  - 1)  components T k [ h (  l ) ]  for 1 S k S  z - 1, then 
standard enumeration arguments yield the TA equations 

( I  -M)T=  ( Z  - l)f for P < Pc (3.7) 

so, as required, T, and thus S, diverges as p + p c ,  where det( I - M) + 0. 
The treatment of fourth- and higher-order .-Markovian distributions is somewhat 

more complicated than the above, but proceeds in an  analogous fashion, and  analogous 
structure is manifested. A few sample results are given in the appendix for the case z = 3 .  

4. Decorated Bethe lattices and bond percolation 

It is well known that exact treatment of random site (or  bond) percolation can be 
extended from Bethe lattices to more general branching media (decorated Bethe lattices) 
[8]. The same is clearly true for the correlated distributions considered above. This 
observation also demonstrates that exact treatment is possible for correlated nth-order 
Markovian bond percolation on Bethe lattices, since this corresponds to site percolation 
on suitably decorated Bethe lattices (e.g., bond percolation on a z = 3 Bethe lattice 
corresponds to site percolation on a triangular cactus [8]). 

Bond-percolation problems can, of course, be treated directly and involve consider- 
ation of essentially the same configurations as the site problems. A mapping between 
s site and s - 1 bond configurations has been elucidated by Fisher and  Essam [8]. 
This result suggests that there should be a correspondence between nth-order 
Markovian site percolation and ( n  - 1)th-order Markovian bond percolation. This is 
readily verified, e.g., by deriving closing equations for the probabilities that certain 
sets of configurations are not connected to infinite clusters. Examples of these sets 
for second- and third-order Markovian bond percolation are shown in figure 5, and  
the corresponding percolation thresholds are given by expressions analogous to the 
site-percolation expressions. Expressions for nth-order Markovian bond-percolation 

Figure 5. Configurations for z = 3 Bethe lattice bond percolation o r  triangular cactus site 
percolation for ( a  1 second-order,  i b  I third order  Markovian distributions. Full (broken)  
lines represent filled (empty)  bonds.  
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probabilities map into (n  + 1)th-order site-percolation probabilities for adjacent pairs 
of occupied sites to be in an infinite cluster. 

5. Polychromatic and multiphase percolation 

The problems considered above could be described as two-colour percolation, i.e. 
occupied (unoccupied) sites are described as black (white). One can readily generalise 
our treatment to handle polychromatic percolation on Bethe lattices where the sites 
are assigned one of a finite number of colours, according to nth-order Markovian 
statistics. 

We now focus on a special type of correlated polychromatic percolation which we 
describe as two-phase percolation. Here we consider occupied site distributions on 
Bethe lattices containing no neighbouring pairs of occupied sites (so p 6 i), and define 
‘occupied 2” clusters’ via the natural second-nearest-neighbour (2”) connectivity 
requirement. These have one of two phases, and ‘abutting’ clusters of different phase 
are separated by an unoccupied pair ‘domain boundary’ (see figure 6 ) .  In addition to 
occupied 2” cluster percolation, one can consider percolation of clusters of unoc- 
cupied sites which have all nearest neighbours unoccupied (using a N N  connectivity 
requirement). Describing the latter sites as white and occupied Z N N  cluster sites of 
different phases as green and yellow, say, we can then have a correlated trichromatic 
percolation problem. Such problems have been considered on a square lattice to model 
4 2  x 2 )  ordering on surfaces [ 131. In the analysis below, we assume that the statistical 
characteristics of both occupied phases are identical. 

Figure6. Out-of-phase ‘filled ~ N N  clusters‘ separated by an  empty pair domain boundary 
on  a z = 3 Bethe lattice. 

We first consider two-phase percolation for up  to third-order Markovian distribu- 
tions. Let F(1) be the conditional probability that a site is occupied giuen that a 2” 

site is occupied. For percolation, it is necessary for the cluster to spread to one of the 
( z -  1)’ other unspecified 2” sites, so one must have ( 2 -  l)’F(l)z 1. At the percola- 
tion threshold for occupied Z N N  clusters, one thus has 

The special case of first-order Markovian distributions corresponds to the equilibrium 
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Ising models with infinitely repulsive N N  interactions. Here F (  1)  becomes the conditional 
probability of a occupied site given an unoccupied NN, which equals p (  1 - p ) - ’ .  Thus, 
from (5.1), here one has p c = ( z 2 - 2 z + 2 ) - ’  (which is less than f for ~ 3 3 ) .  

To calculate the corresponding percolation probability, P, start by considering the 
z - 1 sites neighbouring the unoccupied end of an (adjacent) unoccupied-occupied 
pair. Let G( i )  ( F (  i ) )  denote the conditional probability that a specific subset of i of 
these will be occupied, and  that the rest will be unoccupied (unspecified). The F ( j )  
generalise F ( 1 )  above. The probability, Q, that the occupied site in the unoccupied- 
occupied pair is not connected to an infinite 2” occupied cluster through one of these 
z - 1 sites satisfies (see (2.2)) 

consistent with (5.1). P can be readily calculated from the Q. One could also readily 
calculate average occupied 2” cluster sizes. 

Next we sketch some results for fourth-order Markovian distributions. Define 
configuration CA as follows. Start with an  adjacent unoccupied-occupied pair; assign 
the other z - 1  neighbours of the occupied site ( E k )  to be unoccupied; of the z - 1  
other neighbours of the unoccupied site, assign a specific k to be occupied and the 
rest to be unoccupied. Let Qk denote the probability that Ck is not connected to an  
infinite occupied 2” cluster through E k e  A coupled closed set of non-linear equations 
can be obtained for the Qh which we linearise about Qk = 1 to obtain a condition for 
the percolation threshold. Pick one site in Eh and let G k ( i )  be the conditional 
probability that, of its z - 1 neighbours not in Ck, a specific subset of i are occupied, 
and the rest are unoccupied. If M is the matrix with components Mkr = 
( z  - l)’(’;’)Gk( i ) ,  then the condition for p c  becomes det(M - I )  = 0 (see figure 7 ,  for 
z = 3, which should be compared with figure 4). 

Finally we comment on the analysis of the percolation characteristics of white sites 
(unoccupied sites with all N N  unoccupied). A condition for the percolation threshold 
is easily determined by considering the probabilities that certain configurations are nor 
connected to infinite white clusters. Results for third- and 4th-order Markovian 
distributions are represented diagrammatically in figure 8 for z = 3. For the fifth-order 

Figure 7. Diagrammatic representation of the percolation threshold condition for filled 
?N Y clusters for fourth-order Markovian distributions. Sites inside boxes have specified 
state. 

1.31 1 - 2  

I b l  1 = 2  $23 
Figure 8. Diagrammatic representation of the percolation threshold conditions for white 
sites for ( a )  third-order,  ( b )  fourth-order Markovian distributions. Sites inside boxes have 
specified state. 
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case with z = 3 ,  let H , ( i )  be the conditional probability that i specific neighbours of 
the top left site in configuration eh (shown in figure 9) are unoccupied, that the other 
z - i are occupied and that both neighbours of the bottom left site are unoccupied. If 
M denotes the 3 x 3 matrix with components M k ,  = 2 ( f ) H k ( i )  for 0 s  k, i s  2, then at 
p = pc  one has det(M - I) = 0. Calculation of associated P and S, and extension to 
more complicated distributions, is straightforward. 

Figure 9. Configurations, e , ,  associated with white site percolation for fifth-order distribu- 
tions on a i = 3 Bethe lattice. 

To conclude this section, we note that the above treatment can be generalised to 
multiphase, or specifically m-phase, percolation by considering occupied site distribu- 
tions on Bethe lattices where no occupied site has any first, second,.  . . , ( m  - 1)th N N  

sites occupied. In addition, we can allow the various occupied phases to have different 
statistical characteristics without any real complication. 

6. Some examples 

The ideas discussed above are illustrated here with several examples of correlated 
percolation on Bethe lattices. 

6.1. First-order Markovian N N  Ising-model equilibrium distributions 

Occupied sites here correspond to an equilibrated lattice gas with N N  interactions E 

at temperature T. We set p - '  = kT where k is Boltzmann's constant. We can calculate 
the conditional probability, j ( l ) ,  of a occupied site given a neighbouring occupied 
site, from the probability of an unoccupied-occupied pair, p (  1 -I( 1)) .  The latter 
equals 2p ( l  - p )  {[1+4p( l  - p ) ( e - "  -1)]' '2+ I}-' expect in an  'antiferromagnetic' 
ordered region for repulsive E > 0, or in the coexistence region for attractive E < 0 
[ 12, 141. Thus the occupied site-percolation threshold, p:,  can be obtained, from (2.1), 
as 

(z - 1) epF 
( z  - 2)2+  (2z - 3) epF P? = 

recovering previous results [ 121. Since these distributions are invariant under the 
replacements p-1  - p ,  unoccupied sites - occupied sites, i t  follows that the threshold 
for unoccupied site percolation is given by p ;  = 1 - p : .  

6.2. Second-order 0 -Markovian distributions from irreversible cooperative jilling 

Here the rates, k , ,  for irreversible filling of the lattice sites depend on the number, i, 
of occupied neighbouring sites. We choose k, cc (Y', and make the identification 
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for comparison with the above equilibrium results. Note that a > 1 corresponds to 
clustering distributions, and ferromagnetic or attractive interactions. The second-order 
0-Markovian property allows us to obtain a closed set of equations for the probability 
of an unoccupied site, an unoccupied pair, and the quantities corresponding to the 
f( i )  of § 2 for unoccupied sites [ 113. These quantities determine the probabilities of 
all connected unoccupied configurations. The f( 1) quantity for unoccupied sites 
determines the unoccupied site-percolation threshold, p :  , which we have shown in 
figure 10 for z = 3 as a function of a. The corresponding equilibrium values are also 
shown for comparison. We note that, for the equilibrium case, (1 - p : )  eCPF + 2 as 
- P E  +CO,  in contrast to irreversible cooperative filling where (1 - p f )  a = 0.689, 0.690, 
0.751, 0.788, 0.840 for a = 5, 10, 50, 100, 300. The percolation probability and average 
cluster size for unoccupied sites can also be evaluated. 

/ 
/ 

/ 

0.316'- X 

t 
I I ' .  
1 3 5 10 100 

O B  ' ' I  ' 
11100 11'10 1:s 1 \3  

a,e-P' 

Figure 10. Variation of the empty site-percolation threshold,  p p ,  with N N  cooperativity 
parameter U, for irreversible filling (full curve),  and  with N N  interaction E ,  for equilibrium 
distributions (broken curve),  on a z = 3 Bethe lattice. Some second-order Markovian 
approximations to filled site-percolation thresholds ( x ) for irreversible cooperative filling 
are also shown,  as  well as  the equilibrium ferromagnetic and  antiferromagnetic ordered 
phase boundaries (dot ted curves).  

These distributions are not invariant under the replacements p e l -  p ,  unoccupied 
t* occupied, and are not .-Markovian to any order, except when a = 1. Thus exact 
determination of the occupied site-percolation threshold, p t ,  is not possible. One can 
however evaluate exactly, e.g., the conditional probabilities, qx, of an occupied site 
given an adjacent string of s occupied sites ( qo = q, q ,  =f( l ) ,  q2 =f( l ) ) ,  after determin- 
ing the probabilities of suitable sets of disconnected unoccupied configurations (see 
[ 151 for z = 2 ) .  Here we forego a detailed description of these extensive calculations, 
and mention only that evaluation of qy  requires determination of 0, 6, 12, 24, 39 such 
additional independent quantities for s = 1, 2, 3, 4, 5, respectively. In table 1, we have 
displayed qy behaviour for p presumably close to the occupied site-percolation threshold 
( ( z  - l ) q z  = 1 in the second-order Markov approximation) for z = 3. If a is not too 
far from unity, i.e. if the cooperativity is not too strong, the occupied site distribution 

.. 
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Table 1. Conditional probabilities, 9$, of a filled site given an adjacent string of s filled 
sites, and p balues, when 4: = !. Results are shown for distributions obtained by irreversible 
cooperative filling for barious values of c y .  

c y P  41 92 93 94 45 

10 0.156 0.519 83 0.500 93 0.492 89 0.491 06 0.491 28 
5 0.222 0.51 1 19 0.500 38 0.496 71 0.496 26 0.496 38 
2 0.361 0.502 012 0.500 431 0.500 060 0.5000 041 0.500 045 
1 0.5 0.5 0.5 0.5 0.5 0.5 
f 0.645 0.500 191 0.500 127 0.500652 0.500 583 0.500582 

0.651 0.498 70 0.499 80 0.504 I ?  0.502 24 0.502 53 
0.661 0.498 52 0.500 11 0.506 33 0.502 67 0.503 64 

is quite accurately represented by a second-order .-Markovian distribution, and thus 
p: is readily estimated. 

6.3. First-order 0-Markovian distributions f rom random dimer filling 

The distribution obtained from irreversible (dimer) filling of adjacent sites on a Bethe 
lattice is first-order 0-Markovian. At coverage p,  the conditional probability of an  
unoccupied site given an adjacent unoccupied site equals ( z  - 2)-’[(z - 1 ) (  1 - P ) ‘ ’ - ~ ’ ’ ~  - 
13, for z > 2 [ 111. We thus obtain the unoccupied site-percolation threshold 

p ~ = l - [ ( 2 * - 3 ) ( z - l ~ - ~ ] : ” ~ - ~ )  (6.2) 
which should be compared with the saturation coverage p* = (z - l)-‘  ‘I-’) [ 111. We 
note that unoccupied site percolation for random dimer filling on physical two- 
dimensional lattices has been proposed as a model for the geometry of solid ionic 
conduction [ 161. 

6.4. Two-phase percolation f o r  filling with N N  blocking 

For filling with N N  blocking, we set the filling rates, k , ,  of § 6.2 to zero when i 3 1. 
Distributions with no occupied N N  pairs are generated for a range of coverages u p  to 
saturation ( ~ 5 ) .  These are distinct from the “corresponding” equilibrium distributions 
obtained from the N N  Ising model with infinitely repulsive N N  interactions. Exact 
treatment of occupied 2” cluster percolation for the former is not possible because 
of the lack of a finite-order Markov property. However, a percolation transition is 
expected to occur for all 2 2 3 .  Consider the case z = 3 ,  where percolation is most 
difficult to achieve. For the ‘corresponding’ equilibrium distributions, we know, from 
9 5, that this transition occurs at coverage 1 .  Presumably, for irreversible filling, the 
transition will still occur in this vicinity, which is well below the saturation coverage 
of 0.375 [ l l ] .  To support this assertion, we note that the second-order Markov 
approximation to the threshold is p = 0.212. At this point the conditional probability 
of a occupied site given an  adjacent unoccupied-occupied pair, i.e. F(1), equals a ,  
and given an adjacent unoccupied-occupied-unoccupied-occupied string it equals 
0.25038. (These results were obtained by the methods described in § 6.2.) The percola- 
tion threshold for white clusters (of unoccupied sites with all N N  unoccupied) can be 
calculated exactly as p = 0.219 (compare with p = ( 4 2  - 1) (242 - l ) - ’  = 0.227 for the 
‘corresponding’ equilibrium distributions). 
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7. Conclusions 

Our treatment of correlated percolation on Bethe lattices has extended previous exact 
results for random and N N  Ising-model distributions to longer range Ising-model and 
certain non-equilibrium distributions. Unoccupied site percolation for irreversible 
cooperative filling provides explicit examples of the latter. Our examples have the 
same critical exponents as for random percolation (see (2.5)). The key to exact analysis 
was a finite-order 0- or 0-Markovian property. However, even for distributions with 
no such property, the corresponding finite-order Markovian approximations, together 
with our results, would provide, for example, a convergent sequence of approximations 
to p c .  We have also introduced an interesting new class of multiphase percolation 
problems, which are necessarily correlated. Our work naturally suggests the develop- 
ment of approximate spreading or cluster growth algorithms for correlated percolation 
on physical (and most easily two-dimensional) lattices, using ideas described in the 
introduction. Here we would retain only a finite number of conditional probabilities 
to determine spreading, by neglecting the influence of more distant sites. We have 
already undertaken a finite-size scaling analysis of correlated percolation for irreversible 
cooperative filling on a square lattice [17]. 
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Appendix. Higher-order O-Markovian distributions 

Consider first fourth-order O-Markovian distributions on Bethe lattices with z = 3. Let 
Q, denote the probability that the left end of configuration y = 1 k, k’ with k = 0, 1 ,2  
(see figure 11) is not connected to an infinite occupied cluster. Let g l k ( i )  denote the 
conditional probability that i specific sites neighbouring the left end of 1 k are occupied, 
and that the rest are unoccupied. Set det g l , ( i )  = g l l ( l ) g l ~ ( 2 ) - g , , ( 2 ) g , ~ ( l ) .  Here Q,l 
and QI3 are obtained as linear combinations of QI1  and Q1,, and Q I 1  can be eliminated 
to obtain l - Q l z =  h I2 (2 ) (1  -2g, l (1))(1-Q, , ) ,  where h 1 2 ( 2 ) = g 1 2 ( 2 ) - 2 d e t g l , ( i ) .  The 
Qk, are obtained as second-order polynomials in Q I 2  and Qz,, and thus in Q 1 ,  and 

Figure 1 I .  Configurations, y ,  associated wi th  percolation quantities for fourth-order 
Markovian distributions on a : = 3 Bethe lattice. 
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Q2 , using the above relation. Linearisation about 8 Q k  
one has 

Qk - 1 implies that, at p = p c ,  

0 = 1 -2[g , , ( l )  + g,,(2)1+4[g1,( l)g12(2) - g2,(1)gd2)1 

+ 8g2,( l )  det SI , (  i )  + 8 g 1 2 ( 2 )  det g 2 , ( i )  
-16det g l , ( i )  det g r , ( i )  

with g,, ( i )  and det g2k ( i )  defined in an  analogous way to g, , ( i )  and det g,, ( i )  but for 
configurations 2 k  (see figure 11). For third-order .-Markovian distributions g,k( i )  -+ 

g,(i), so reduction of this result to (3.5) is immediate. 
The percolation probability, P, can be determined from the Q, ,  and Qk with 

k = 0,1,2. To determine the average cluster size, S, we must first evaluate the auxiliary 
quantities, T,, denoting the average number of occupied sites attached to the left end 
of y = 1 k, k' with k = 0,1,2. Here we just note that one can extract a pair of linear 
inhomogeneous equations for the TA involving the same matrix as the linearised 8Qk 
equations, and thus incorporating the requisite divergent behaviour. 

In continuing to fifth-, sixth-order, etc, .-Markovian distributions, the primary 
quantities of interest. are still calculated via auxiliary quantities (0, giving the probabil- 
i ty that configuration y is nor connected to an infinite cluster in a certain way, etc). 
The main complication is in the greater variety of y that must be considered to obtain 
closed sets of equations for these quantities. 
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